
Programming Assignment #5

Part 1 (data input):

Write a C program that prompts the user to enter some data regarding some clients to a
business. The user should prompt for customer account number (a positive integer
between 1 and 1000), a last name (a string), and their account balance (a positive
floating point number) as shown below. Notice how the user input terminates once the
user enters a -999 as the account number:

Enter account number, last name, and balance.
Enter -999 to end input:

? 100 Smith 24.98
? 8000 Jones 334.33
*** Invalid account number. Please enter 1 - 1000 or -999 to exit ***
? 800 Jones 334.33
? 400 Johnson 56.55
? 300 Roberts -330.90
*** Invalid balance amount. Please enter a positive value. ***
? 300 Roberts 330.90
? 500 White 0.00
? –999

(What the user types in is shown in blue for clarity only.)

You could store this information in either 3 separate arrays or in an array of type struct
(something).

Make the array sizes large enough to hold data for up to 5 clients.

Part 2 (data output):

Once the user has completed entering the data, the program should then SORT THE
DATA IN ASCENDING ORDER BY ACCOUNT NUMBER, and then output the client
data in table form as follows:

ACCOUNT LAST NAME BALANCE

100 Smith 24.98
300 Roberts 330.90
400 Johnson 56.55
500 White 0.00
800 Jones 334.33

If the user enters -999 as the first account number, the program should simply exit,
without displaying any information such as:

Enter account number, last name, and balance.
Enter -999 to end input:

? –999

Hints:

 If you choose to store the information in arrays, the array for the last name could
look like: char last_name[5][30]; and you would prompt as follows: scanf ("%s",
last_name[x]); where x is for each client and goes from 0 to 4. When outputting this
information, you simply use the %s format specifier again as: printf ("%s",
last_name[x]);

 When prompting for the information, use 3 separate scanf statements for each

client. That is, although the user will enter the information all on 1 line, your scanf
statements can look like the following (assume you have chosen to store your data
in arrays:
 scanf ("%i", &client_num[x]);
 scanf ("%s", last_name[x]);
 scanf ("%f", &balance[x]);

That way, after you read the client_num, you can test for the value of -999 before
going on to read the last_name and balance.

Important: Do not wait until the last minute to work on this one. :-)

5 POINTS OF EXTRA CREDIT FOR ASSIGNMENT #5

To earn 5 extra credit point, before displaying results, prompt the user to see if
information should be sorted by Account Number, Last Name, or Balance. Based on
what the user inputs, sort data accordingly.

Sample program execution (with bonus) on next page

Enter account number, last name, and balance.
Enter -999 to end input:

? 100 Smith 24.98
? 8000 Jones 334.33
*** Invalid account number. Please enter 1 - 1000 or -999 to exit ***
? 800 Jones 334.33
? 400 Johnson 56.55
? 300 Roberts -330.90
*** Invalid balance amount. Please enter a positive value. ***
? 300 Roberts 330.90
? 500 White 0.00
? –999

How would you like information sorted?
1 = Account Number
2 = Last Name
3 = Balance

? 5
*** Invalid number entered. ***

How would you like information sorted?
1 = Account Number
2 = Last Name
3 = Balance

? 3

ACCOUNT LAST NAME BALANCE
500 White 0.00
100 Smith 24.98
400 Johnson 56.55
300 Roberts 330.90
800 Jones 334.33

